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Abstract

As supercomputing workloads transition from vector to RISC architectures, vectorized CFD algorithms
must adapt to execution on microprocessors. The initial execution of these algorithms on a RISC
microprocessor will be typically memory-bound because vectorized floating point calculations require
more data than the microprocessor cache can deliver. Since many of these applications execute efficiently
on vector machines, algorithmic improvements for RISC machines may not be obvious. This paper
presents performance data resulting from some simple algorithm modifications to an efficiently
vectorized NAS workload code. The modifications involved both replacing the “sliding-window”
technique by an approach which placed the entire problem in core, and consolidating several subroutines
to decrease overhead. The modifications increased floating point performance by about 15%.

1. Introduction

The introduction of RISC computers into the NAS environment will require the vectorized NAS
algorithms to adapt to microprocessor architectures. The typical NAS code executing on the vector C90
machines achieves about 25% of peak performance[1], but NAS workloads executing on RISC platforms
display efficiencies of 3-7%][2]. This lower level of efficiency has motivated a desire to improve
performance by adapting the existing codes to the microprocessor environment. While one way to
improve performance may be to utilize more processors through parallelism, this report emphasizes
single-CPU performance because many user codes do not scale beyond some limited number of
processors, i.e., adding more processors beyond this limit does not significantly reduce elapsed time. The
code algorithms may scale, but the code applications do not.

Because the latency and bandwidth of the RISC microprocessor memory systems have not kept pace with
raw processor speed, many of the NAS computational fluid dynamics (CFD) computer codes are memory
bound. Optimization requires both an algorithmic implementation and a coding style which balances
memory references and floating point operations in order to minimize the amount of cycles the processor
spends waiting for data from memory. Since adapting existing codes generally precludes choosing a
substantially new algorithm, optimization usually reduces to redoing the original programming style.

Adapting a code to the RISC architecture can include a variety of activities beginning with unrolling
outer loops and merging the resulting copies of inner loops[3]. Typically, the innermost loop of a vector
code operates on the largest dimension of a multidimensional array. Reordering the indices of this loop
and those of the array to allow this loop to execute on “in-cache” data is another popular optimization.
Blocking loops for cache, i.e., processing loop data in cache-sized chunks, can improve performance if the
loop processes the data arrays with large stride or if the loop reuses data values many times. However, a
code executing efficiently on a vector computer may already be employing good programming practices
and the usual prescriptions for improving performance may not apply.

The LAURA (Langley Aerothermodynamics Upwind Relaxation Algorithm) code[4] is an efficient vector
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code which plays a prominent role in the NAS supercomputing workload. LAURA displays a C-90
performance of about 300 Mflops/CPU. Code authors kindly provided a recent source code[4], version
4.5, and a small sample problem, as a template to investigate what sort of changes could lead to higher
CPU efficiency.

This report discusses the changes made to the LAURA code to increase RISC CPU performance by 15%
on the SGI Origin2000. The principal goal of this report is an explanation of the process required to
modify an algorithm, designed to run well on one architecture, to run even better on a second
architecture. Such a modification requires some understanding of both the algorithm and the architecture.
Section 2 describes the LAURA algorithm and data structure. Section 3 discusses the initial LAURA
performance. Section 4 discusses the optimization and Section 5 presents some conclusions.

2. Description of the LAURA Code

LAURA treats hypersonic, viscous flow around space transfer vehicles as well as flow within supersonic
scramjet engines and nozzles. The code employs a finite volume, shock-capturing algorithm to simulate
viscous or inviscid steady-state flows. LAURA employs an upwind-biased, flux-difference splitting
algorithm with second-order corrections based on a total-variation-diminishing (TVD) scheme. In
contrast to the fully factored treatments [5], which sequentially solve systems of block tridiagonal
equations, LAURA employs a “point implicit” strategy which solves a system consisting of simultaneous
linear equations with a simple Gaussian technique. Slabs adjoining a given slab in the non-sweep
direction (i.e., in the x- and y-direction for a z-sweep) propagate the changes in their face values via
boundary exchanges in an asynchronous fashion to allow the iteration to use the latest available data. The
LAURA package provides both shared memory and MPI (Message-Passing Interface) versions; the
current effort used the MPI version.

The MPI version of LAURA decomposes the computational domain into blocks with each block assigned
to a processor. Figure 1 shows an idealized picture of the z-slabs and z-sweep for the 8-block sample
problem. Of the 32 z-slabs in the sample problem, the figure shows slabs 1 to 4 with slab 1 adjacent to the
wall and slab 4 a distance away from the wall; slab 32 is adjacent to the freestream boundary. Each
processor traverses the rectangular slabs comprising its block against the flow direction, beginning with
the slab nearest the vehicle surface and its wall boundary condition, and moving across the boundary
layer out to the freestream end of the mesh. The code then reverses the sweep, visiting the slabs in the
direction of the flow toward the slab on the vehicle surface. Upon visiting a slab, the code computes
gradients of the characteristic variables at the z-interfaces, limits these gradients according to the TVD
scheme, relaxes the governing equations to form the left-hand side, and solves for the changes in the flow
variables. The vertical arrows in the figure show MPI boundary data exchanges for those faces having a
common interface. These boundary exchanges occur at user-specified intervals and time spent in MPI
execution does not contribute significantly to the elapsed time. The figure also shows that front and back
faces lie in the direction of the flow and that the other four sides are normal to the flow. Since the blocks
all contain the same number of nodes, this problem is well-balanced for parallel execution. Further, the
memory required for each block fits within a single CPU, isolating each CPU’s memory loads and stores
from those of the other CPUs. Thus, this sample problem provides an excellent vehicle for investigating
single CPU performance.

LAURA is highly vectorized. The programming approach collapses the two dimensions associated with
the computational plane into a single FORTRAN loop index to give longer vectors. Since typical large
problems can involve millions of slabs, the algorithm employs a sliding window technique to keep only
several (3 for first-order spatial accuracy, 5 for second-order spatial accuracy) of the slabs in the working
memory for any slab in the sweep. The small size of the early vector machine memories necessitated this
approach and the memory speed of the current generation of vector computers allows this technique to
produce a high floating-point performance rate, even though the windowing technique places a strong
demand on the data transfer rate of the memory subsystem.
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Figure 1
Structure of LAURA 8-block Sample Problem
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Although LAURA is highly vectorized and runs well on the C90, it may run poorly on a RISC machine.
The first way to identify possible inefficiencies is to examine where the code is spending its time. Table 1
quantifies the time spent in the various subroutines and provides the percentages of total elapsed time
contributed by the major subroutines.

Table 1: Initial LAURA Subroutine Elapsed Times-1000 Steps

Subroutine Elqpsed Percentage Comment
Time

gatface 230.2 20.8 place central defined-slab data into skatefarrays

drv 151.5 13.7 Roe aeraging of characteristiaviables

invflx 100.4 9.1 compute iniscid component of flux:

dirswp 97.43 8.8 manage slab data placement and direct the sweep along
the slabs

gatgeoa 94.79 8.5 gather geometry data for the current slab into the current
face

minmod 94.37 8.5 calculate minmod of tev vectors, element by element

dropone 74.91 6.8 move slabdatafrom onelocal slabto anothetocal slabin
the sliding windav

gatscta 59.47 5.4 gather slab data from local slab 3 into the global array or
scatter data from the global array into the local array

limiter 32.30 2.9 limits changes in the characteristariables via minmod

total 1109.0 1.000 total elapsed time

The table shows that much of the code involves loading slab data into various faces and returning slab
data into permanent storage arrays. The table identifies subroutines GATFACE, GATGEOA, DROPONE,
and GATSCTA as accounting for over 40% of the elapsed time. These routines do very little computation.
Instead, they comprise the main routines implementing the sliding window technique.

Since the sliding window technique accounts for much of the elapsed time, an understanding of this
method is important to see whether modification can reduce the elapsed time involved. Figure 2,
illustrating the local and global numbering employed in this technique, shows both the placement of the
global slab data in the sliding window and the required data movement as the code visits the slabs.
Global numbering is the same as that shown in Figure 1: there are 32 slabs in the z-sweep and slab 1 lies
adjacent to the wall and slab 32 lies adjacent to the freestream. Local numbering refers to the
computational scheme. Second-order accuracy requires 5 local slabs, two downstream(L1 and L2) and
two upstream(L4 and L5) of the working slab (L3). To compute global slab 1(adjacent to the wall), data
for pseudo-boundary slabs 1" and 1’ must be placed into local slabs L1 and L2. The data for global slab 1
is placed into local slab L3. Placement of global slab 2 data and global slab 3 data into local slab L4 and L5
completes the sliding window. The global slab 1 computation is now ready to proceed. The arrows show
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Figure 2
LAURA Sliding Window Technique
For Global Slabs 1-32 of Block 1

Global Slab Local Slab Data Contents
L1 L2 L3 L4 L5
1 1” 1 1 2 3
2 1 1 2 3 4
3 Storage

//////

4  Storage 2

31 29 30 31 32 32’
32 30 31 32 32’ 32"

To compute global slab 1 with second-order accuracy, LAURA requires that:
Local slab L1 must contain data for a pseudo-boundary slab 1”

Local slab L2 must contain data for a pseudo-boundary slab 1’

Local slab L3 must contain data for global slab 1

Local slab L4 must contain data for global slab 2

Local slab L5 must contain data for global slab 3

To compute global slab 32 with second-order accuracy, LAURA requires that:
Local slab L1 must contain data for global slab 30

Local slab L2 must contain data for global slab 31

Local slab L3 must contain data for global slab 32

Local slab L4 must contain data for a pseudo-boundary slab 32’

Local slab L5 must contain data for a pseudo-boundary slab 32”
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the data movement required somewhat later in the z-sweep just before the calculation of global slab 4 and
represent the following sequence and subroutines:

Storing local slab 1 into the global array (GATSCTA)

Moving local slab 2 (global slab 2) into local slab 1(DROPONE)
Moving local slab 3 (global slab 3) into local slab 2(DROPONE)
Moving local slab 4 (global slab 4) into local slab 3(DROPONE)
Moving local slab 5 (global slab 5) into local slab 4(DROPONE)
Retrieving global slab 6 from global array into local slab 5 (GATSCTA)

3. LAURA Performance on SGI Origin

The R10000 is a superscalar RISC processor, capable of fetching and decoding 4 instructions per cycle
which can execute on its 5 independent pipelined functional units: a load /store unit, 2 arithmetic logic
units, a floating-point add unit, and a pipelined floating point multiply unit. The latter two units can be
chained together to perform multiply-add instructions. The R10000 provides a two-level cache hierarchy,
a 32 KB 2-way set associative level 1 on-chip cache with a 64 byte line size and a 4 MB 2-way set
associative Level 2 off-chip secondary cache with a 128 byte line size. The time to access data, the memory
latency, is 2 or 3 clock cycles for data in the L1 cache and 8 to 10 clock cycles for data in the L2 cache. If
the processor has to access data in user main memory, i.e., the data is not already in the primary or
secondary cache, the latency is at least 60 clock cycles. The Origin employs a virtual memory Operating
System (OS) which arranges user main memory into areas called pages. If the desired data does not
reside in the current pageset, a TLB (Translation Lookaside Buffer) miss occurs as the OS must bring in
the page containing the desired data. While there are different delays associated with the various levels of
TLB misses, the TLB delay experienced by LAURA is about 70 cycles per miss.

The R10000 processor supplies two counters, termed Event Counters (EC) for reporting certain hardware
events and the information provided by these counters was extremely helpful in deciding how this
processor limited the LAURA code performance. Each of the R10000 counters can track one event at a
time and provides a choice of 16 events per counter. There are also two associated control registers which
are used to specify which event the relevant counter is counting. Each counter is a 32-bit read / write
register and is incremented by one each time the event specified in its associated control register occurs.
Perfex, the utility which reads the event counters, can execute in one of two modes. In sampling mode,
Perfex samples all of the reported hardware events and thus can provide approximate counts for 32
events. In exact mode, Perfex provides exact counts for 2 user-specified events and a complete
performance picture would require 16 executions. Perfex reports raw R10000 event counts and associates
an approximate time cost with the event counts [7].

Perfex also reports a number of statistics derived from the typical time costs, and Table 2 describes five
key memory statistics.

Table 2: Perfex-derived Memory Statistics

Statistic Description

L1 Cache Line Reuse Average number of times that a primary data cache line is used
after it has been mved into the cache.

L2 Cache Line Reuse Averagenumberof timesthata secondarylatacachdine is used
after it has been mved into the cache.
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Table 2: Perfex-derived Memory Statistics

Statistic Description

L1 Data Cache Hit Rate | Fraction of data accesses which are satisfied from a cache line
already resident in the primary data cache.

L2 Data Cache Hit Rate | Fraction of data accesses which are satisfied from a cache line
already resident in the secondary data cache.

Time accessing memory/ | Total of the typical costs of graduated loads, graduated stores,
Total time primary data cache misses, secondary data cache misses, and
TLB misses diided by the total program run time.

Table 3 contains the key Perfex reported events ranked in order of the highest time cost for the original
LAURA. The largest costs occur for the primary (on-chip L1) data cache misses and memory loads.
Maximum performance occurs when the processor operates on data in its primary cache, and the
decrease in floating point performance when the processor operates on data in its secondary cache is
about 30% for ideal loops [8]. Perfex output for LAURA execution indicates that secondary cache and TLB
misses make smaller contributions to the overall execution costs. Perfex statistics confirm the relatively
good use of the cache memory hierarchy with 91 primary and 99% secondary cache memory hit rates.
Perfex reports a single processor performance rate of 35 MFLOPS. This rate is a underestimate because
Perfex cannot distinguish floating-point multiply-add from a floating point multiply or floating point add.
Subsequent executions of LAURA in exact mode indicated that the correct rate was 45 MFLOPS. Perfex
statistics also report that a floating point operation requires over 2 memory operations, significantly
higher than the corresponding ratio required for the standard NAS workload suites.

Table 3: Selected SGI Event Counters-Initial LAURA-300 Steps

Reported Egnt Estimated Egnt Cost (sec)

Cycles 921.3
Primary data cache misses 334.2
Memory Loads 274.5
Floating point instructions 164.2
Memory stores 137.1
Quadwvords written back from primary data cache 132.6
Decoded branches 58.2
Secondary data cache misses 37.7
Quadwords written back from scache 12.3
TLB misses 9.6
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Table 3: Selected SGI Event Counters-Initial LAURA-300 Steps

Reported Egnt Estimated Egnt Cost (sec)

Statistics

Graduated loads & stores/floating point instruction 2.2

L1 Cache Line Reuse 10.0

L2 Cache Line Reuse 73.2

L1 Data Cache Hit Rate 0.909

L2 Data Cache Hit Rate 0.986

Time accessing memonygial time 0.860

MFLOPS (aerage per process) 34.7

Although LAURA displays data cache hit rates and cache line reuse similar to codes such as the NAS
Parallel Benchmarks, L1 cache line reuse is a factor of 10 too low for really high performance. However,
memory loads contribute a significant amount of time, and LAURA requires several loads to produce a
floating-point instruction. LAURA is first and foremost a memory-bound code, one which experiences
delays arising from the magnitude of memory requests, rather than a code which performs poorly
because of memory access patterns.

4. LAURA Optimization

Before the EC diagnostics were available, the initial optimization activity involved examining the large
execution-time routines in Table 1 to see if the loops in these subroutines could perform more efficiently.
The conventional wisdom regarding the porting of vector codes to RISC computers is that the
restructuring of vector loops will reduce cache and TLB misses, thereby increasing performance.

DIRSWP, the subroutine which directs the sweep across the slabs and manages the sliding window,
makes many calls to GATFACE throughout the iteration. Since much of the required data is defined at
slab centers, GATFACE loads center-defined slab data into face-defined data arrays and these are later
converted into face-defined quantities. The loading is accomplished through a double DO-loop which
essentially loads several long vectors into several other long vectors. These loops contained little data
reuse so cache blocking could not increase the performance of this subroutine.

The situation was the same for the other prominent subroutines: typical cache blocking techniques did
not work on LAURA. The code performed most of its array accesses using efficient stride-1 loops with an
indexing technique which allowed addressing of two-dimensional arrays with a singe index.

At this point, a discussion with J. Taft about the lack of success with loop-level optimization led to the
consideration that elimination of superfluous memory references would the best approach to single-CPU
optimization. Since EC data indicated an excessive amount of memory loads and stores as the major
performance problem, reduction of these memory references seemed a promising approach.

A printout of subroutine entry and exit points together with the calls made by the DIRSWP routine as it

executed the sample problem provided familiarity with the code structure and shed light on the sliding
window technique. Large amounts of memory activity appear in DIRSWP both when the code loads and
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unloads the center-defined quantities for slabs comprising the sliding window and when the code
supplies face-defined quantities prior to computing gradients. It was decided to remove the sliding
window scheme first.

Reworking of the memory scheme consisted of changing all references to “in-core” slabs to directly
addressing the data from an expanded storage array containing all data, thus reducing the need for calls
to the GATSCTA and DROPONE routines. Implementation involved stepping through DIRSWP and
resolving the instances in which the modifications produced incorrect results relative to the original
problem (simple routines which summed individual common blocks proved to be the cleanest way to
discover the erroneous coding). The most difficult aspects of the modification involved the boundary
condition arrays because the slab numbers used therein were somewhat implicit.

The careful inspection of the code required by this activity also led to several other modifications:

-DIRSWP always calls GATFACE twice, once for each face, in preparing a slab for calculation: sending
parameters of both faces eliminated the second call.

-LIMITER invoked a routine to calculate special minimization function of two vectors: in-lining this call
allowed a significant reduction in memory operations.

-DIRSWP followed a call to DRV with a call to ABSEIG to compute the local sound speed and
examination of the code indicated that both routines used the same arrays; a modification allowed DRV
to execute ABSEIG coding if the input parameters specified ABSEIG execution.

Table 4 shows the dedicated subroutine timings for the Initial and Final versions made on the Hopper
Origin machine on 05/29/98. The machine contained 64 250 mHZ R10000 processors each with 256 MB of
memory, a 32KB primary cache and a 4 MB secondary cache. The table also shows elapsed-time
improvements made to the key subroutines by the optimizations described above. The final version does
not call MINMOD because an optimization transferred this calculation to LIMITER and the extra work
done by LIMITER explains why it displays an elapsed-time increase in the final version. In the final
version, the sum of the elapsed times for MINMOD and LIMITER is about half of their total for the initial
version. DROPONIE, called several times for each slab by DIRSWP, transferred data from one window
location to another and since the optimization removed the window, DROPONE only initializes the data.
GATSCTA obtained original data from the storage arrays at the beginning of the slab processing and
placed new data into these storage locations at the end of the iteration. The modifications now allow
DIRSWP to work on the data directly. GATFACE obtains the slab-centered data for transfer to the slab
faces and its elapsed-time improvement arises from combining multiple calls into one call.

Table 4: LAURA Elapsed Times (seconds) for 1000-Step Problem

subroutine Initial Version Final Version Improvement
gatface 230.200 204.878 25.322
drv 151.500 150.743 0.757
invflx 100.400 98.593 1.807
dirswp 97.430 100.548 -3.118
gatgeoa 94.790 94.316 0.474
minmod 94.370 0.000 94.370
dropone 74.910 0.599 74.311
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Table 4: LAURA Elapsed Times (seconds) for 1000-Step Problem

subroutine Initial Version Final Version Improvement
gatscta 59.470 4.044 55.426
limiter 32.300 61.370 -29.070
total 1107.865 893.465 214.400

Improvements to the Origin processor may change the overall effect of the memory modifications,. For
example, a larger secondary cache size may improve the memory utilization.

5. Observations

Removing the sliding window from the LAURA code increases the memory requirements by about 8§ MB,
although the actual resident size of the program during execution does not reflect the entire increase
because the IRIX OS memory segments into pages. Typical large-scale LAURA problems seem to involve
increasing the number of processors, while keeping about the same number of points processor. For
example, the RLV configuration (without the wake) involved 64 blocks of 48 x 42 x16 [6]. Removal of the
sliding window for this case would increase the memory requirements per processor by about the same
amount as the current sample problem and would easily fit in the 256 MB memory of the current R10000
processor.

This effort was the first and the most obvious of potential optimizations for LAURA. The large amount of
available memory should allow an additional memory-reducing optimization, removing the GATFACE
calls and keeping some or all of the face data in core. DIRSWP calls GATFACE to supply slab face values
from slab center-defined flow quantities and requires about 20% of LAURA elapsed time.

6. Conclusion

The LAURA code is an example of an efficient vector (or legacy) code which employs a windowing
technique to limit its overall memory footprint. While RISC machines cannot supply vector-level memory
bandwidth for non-local references, they can supply a much greater amount of both local and cache
memory per processor and thus perhaps lessen the need for high memory bandwidth. Removal of the
sliding window, although conceptually a very simple idea, required a significant effort to contribute to a
15% improvement in floating-point performance. Additional reduction of LAURA memory references,
albeit also at an increase in the memory footprint, would be possible through elimination or limitation of
the GATFACE calls. Improving the RISC performance of vector codes through memory reference
reduction requires little specialized architectural knowledge. The approach does require a good
knowledge of the program algorithm, but this knowledge should be available to the typical CFD user.
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